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Abstract
A distorted-wave version of the renormalization group is applied to scattering
by an inverse-square potential and to three-body systems. In attractive
three-body systems, the short-distance wavefunction satisfies a Schrödinger
equation with an attractive inverse-square potential, as shown by Efimov. The
resulting oscillatory behaviour controls the renormalization of the three-body
interactions, with the renormalization-group flow tending to a limit cycle as the
cut-off is lowered. The approach used here leads to single-valued potentials
with discontinuities as the bound states are cut off. The perturbations around
the cycle start with a marginal term whose effect is simply to change the phase
of the short-distance oscillations, or the self-adjoint extension of the singular
Hamiltonian. The full power counting in terms of the energy and two-body
scattering length is constructed for short-range three-body forces.

PACS numbers: 03.65.Nk, 21.45.+v, 11.10.Hi, 21.30.Fe

1. Introduction

The successful application of effective field theories (EFTs) to two-body scattering has revived
interest in developing model-independent treatments of few-body systems, as reviewed in
[1, 2]. In the case of two-body systems, EFTs provide a framework within which the old idea of
the effective-range expansion [3, 4] can be extended systematically to describe electromagnetic
or weak couplings. Their application to three-body systems requires the addition of three-body
forces. The observation that such forces are essential for describing low-energy three-body
observables goes back to the work of Phillips [5] (see also [6]). One model-independent way
of introducing them is the boundary-condition method developed by Brayshaw [7]. The EFT
approach provides a more practical way of doing so, and one which can be extended to include
couplings to external currents.

For two-body scattering, these EFTs have been well explored. If there is a clear separation
between the low-energy scales of interest and the high-energy scales characterizing the
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underlying physics, then the interactions terms in the effective Lagrangian can be organized
systematically as an expansion in powers of ratios of low-energy to high-energy scales. For
weakly interacting systems this ‘Weinberg’ power counting is just that of naive dimensional
analysis [8, 9].

In contrast, in strongly interacting systems with shallow resonances or bound states,
simple dimensional analysis is no longer appropriate because of the appearance of new low-
energy scales. These result in a need to resum certain terms which are ‘unnatural’ in size
[9, 10]. This has been done within various frameworks [10, 11, 13, 14], all of which lead to
the same power counting, often referred to as ‘KSW counting’. For systems with short-range
forces only, it is in fact equivalent to the effective-range expansion developed by Bethe and
others [3, 4]. This expansion is the relevant one for few-nucleon systems at low energies, and
it may also apply to atomic systems where Feshbach resonances can be tuned to give large
scattering lengths.

Both of these power-counting schemes can be understood in terms of fixed points of the
Wilsonian renormalization group (RG) [12]. The RG flow near these points defines the power
counting for perturbations around them. Weinberg counting arises from the expansion around
the trivial fixed point of the RG. KSW counting is associated with a nontrivial fixed point
corresponding to a scale-free system with a bound-state exactly at threshold.

The RG approach can also be extended to systems with known long-range interactions,
provided one has identified all the low-energy scales. In [15] we applied this to examples
including Coulomb and repulsive inverse-square potentials, for which well-defined distorted
waves (DWs) exist. In this distorted-wave RG (DWRG), a cut-off is applied to the basis
of DWs of the long-range potential, leaving that potential unaffected by the cut-off. The
advantage of the method is that it provides a clean separation between the short- and long-
range physics. A resulting nontrivial fixed point corresponds to a DW or ‘modified’ version
of the effective-range expansion [3, 16].

Extensions of the EFT description to systems of three particles involve three-body forces.
These can be represented by six-point interactions in the Lagrangian or, equivalently, by
short-distance boundary conditions (‘pseudopotentials’, as discussed for example in [10]). In
scattering of a third particle from a bound pair, there can be long-range forces resulting from
the exchange of one of the particles. The range of these forces is controlled by the two-body
scattering lengths. In weakly interacting systems, where the size of the scattering lengths is
‘natural’, these forces can be treated as short-range, and Weinberg counting applies to the
three-body interactions. However, for systems with large two-body scattering lengths, the
determination of the power counting is complicated by the presence of long-range forces.
Here we apply the DWRG to determining the power-counting for three-body forces. A very
brief account of these ideas was previously presented in [17], and a much more extensive one
can be found in the PhD thesis [18].

Bedaque et al [19, 20] were the first to look at the problem of short-range three-body
forces in EFTs. Their method is based on the equation originally derived by Skorniakov and
Ter-Martirosian (STM) [24] for systems with zero-range two-body forces. In higher partial
waves and in s-wave nuclear systems with spin or isospin 3/2, centrifugal forces or the Pauli
exclusion principle act to keep the particles apart and Bedaque et al found that the three-body
interactions are irrelevant (in the technical RG sense that they vanish as the cut-off is lowered).
In contrast, for three bosons in s-waves or three s-wave nucleons with spin and isospin 1/2,
Bedaque et al found that three-body forces are not merely important in these systems, they
are in fact essential for producing well-defined results [19, 20] (see also [21, 22]). This work
provides a systematic framework for understanding the ‘Phillips line’, correlating low-energy
three-body observables [5, 6]. More recently, a power-counting scheme for the three-body
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forces in these systems has been constructed by renormalizing the STM equation order-by-
order in the energy [23]. Our work confirms this power counting within the framework of a
full RG analysis.

In other recent work on this problem, Phillips and Afnan [25] have looked at the STM
equation in the case of three s-wave bosons. They were able to reproduce the results of
Bedaque et al by using a subtractive renormalization and introducing a single piece of three-
body data, namely the three-body scattering length. This subtraction constant is equivalent
to the leading three-body force of [20]. Similar results have also been obtained by Mohr
[26].

An alternative to the STM equation for three-body systems with contact interations is
provided by the work of Efimov [27] (for a review, see [28]). This showed that, in the
case of infinite two-body scattering length, the equations become separable in hyperspherical
coordinates and the resulting Hamiltonian contains an inverse-square potential (ISP). The
strength of this potential is determined by the statistics of the system. In systems with nonzero
orbital angular momentum or where the Pauli exclusion principle keeps the particles apart, it
is repulsive. However, in systems with no angular momentum or exclusion principle, such as
three s-wave bosons, there can be an attractive ISP. These are the cases where a three-body
force is required.

Because of its relevance to three-body EFTs, the attractive ISP has been the subject of
several recent papers [29–31]. It will also play a central role in this paper, since the DWRG
analysis for scattering in the presence of this potential provides the basic power counting for the
three-body system. The attractive ISP is particularly interesting from a mathematical point of
view because its wavefunctions have a logarithmic oscillatory behaviour near the origin [32],
which makes it impossible to define a ‘regular’ wavefunction at the origin. Mathematically,
the resolution of this quandary is well known: we need to form a self-adjoint extension of
the Hamiltonian [33–35]. More physically, one can think of this as introducing a boundary
condition to fix the phase of the oscillatory solutions near the origin.

An alternative way to fix the self-adjoint extension is to regulate the singularity of
the potential at short distances and to introduce a counterterm [29, 36]. In essence this is
what momentum-space regularization of the STM equation does for the three-body problem
[20, 22, 23]. Other authors have shown explicitly how a short-range force can be used to select
an extension [29, 31, 36], but have not developed the power counting for it. Furthermore,
the three-body forces obtained in this manner are multi-valued, with no obvious procedure to
resolve this [29, 31].

A notable feature of the approaches based on regularization of the singular interaction
is that they exhibit a cyclic behaviour as the scale of the cut-off is varied [20, 22, 29, 36].
In fact, as pointed out by Wilson [37], they form a novel kind of limit cycle of the RG.
Several examples of this have only recently been highlighted [38–40]. In addition, Braaten
and Hammer have pointed out that a rather minor fine tuning of the quark masses in QCD
would bring the infrared limit of the theory to the effective-range fixed point in the two-nucleon
channel, and hence to a limit cycle for three nucleons [41].

In this paper we apply the DWRG method, first to the attractive ISP corresponding to
three-body systems with infinite two-body scattering length, and then to more general attractive
three-body systems. We apply a cut-off to the deeply bound states as well as the continuum,
and this leads to an RG equation with single-valued but discontinuous solutions. By taking
advantage of Efimov’s separation of the full three-body wavefunction, we are able to show
that the power counting of [23] is not limited to the STM ‘slice’ through it, where two of
the particles coincide. Because of the clean separation of short- and long-range physics in the
DWRG, we are able to derive this counting in a more transparent way. By constructing the
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physical scattering amplitudes, we are able to directly relate the coefficients in the three-body
potential to observables, through a version of the DW effective-range expansion.

2. The RG for three-body forces

For simplicity, we consider here a system of three bosons of mass M, in a state of zero orbital
angular momentum. We assume that the two-body interaction produces a single shallow bound
state with binding energy γ 2/M , corresponding to a ‘binding momentum’ iγ . We start by
considering the effects of two-body forces only and we denote the corresponding three-body
Green function by G2(p), where p is defined in terms of the total centre-of-mass energy by
E = p2/M . This function has the spectral decomposition,

G2(p) = M

4π

N∑
n=1

|�n〉〈�n|
p2 + p2

n

+
M

2π2

∫ ∞

−γ 2
d(q2)

1

p2 − q2 + iε

×
[
|�q,iγ 〉〈�q,iγ | + ϑ(q2)

2

π

∫ q

0
dk|�q,k〉〈�q,k|

]
, (1)

where ϑ(x) is the unit step function. At this point, we should note that an attractive three-
body system with two-body contact interactions is not mathematically well-defined, and an
additional boundary condition is needed to specify the DWs uniquely. As discussed below,
the effects of this boundary condition are equivalent to a three-body force and so, strictly
speaking, it is not possible to define such a system with only two-body forces.

Three types of waves appear in this decomposition. In the first term, we have the bound
states of three particles, |�n〉. In the final term, we have states with three incoming free
particles, |�q,k〉, which we label by their total centre-of-mass energy, E = q2/M , and relative
momentum, k. In the middle are states with one incoming free particle and a bound pair
|�q,iγ 〉. These states are normalized as described in appendix A.

Our short-distance effective three-body interactions act in the in the region where all three
particles are close together. In coordinate space, a natural measure of the proximity of the
three particles is the hyperradius, R, defined in appendix A. We write the DWs as functions
of R and the five hyperspherical angles, collectively denoted by �, which represent the other
degrees of freedom in the centre-of-mass frame. The precise specification of these angles is
not needed since all � dependence will factor out of our results.

A three-body interaction, V3, could be inserted directly into the Faddeev equations [42].
However, for our purposes, it is sufficient to use the ‘two-potential trick’ [32] to define a
T-matrix for the additional scattering produced by V3. We write the full 3 → 3 T -matrix,
T (p), in terms of the one with two-body forces only, T2(p), plus an additional piece, T̃3(p),
that acts between the DWs for the two-body forces:

〈q, k|T (p)|q ′, k′〉 = 〈q, k|T2(p)|q ′, k′〉 + 〈�q,k|T̃3(p)|�q ′,k′ 〉. (2)

The DW term T̃3(p) satisfies the Lippmann–Schwinger (LS) equation,

T̃ 3(p) = V3 + V3G2(p)T̃ 3(p). (3)

There is no problem with connectedness in this equation since the kernel contains the three-
body force.

For zero-range two-body interactions, the small-R behaviour of the wavefunctions in
equation (1) can be found from the work of Efimov [27]. The essential elements of this, in our
notation, are outlined in appendix A. Since the wavefunctions do not have well-defined limits
as R → 0, we choose our effective three-body interaction to act at some small, but nonzero
hyperradius, R = R̄. This additional regularization is quite separate from the running cut-off
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which will give the RG flow. As with the singular long-range potentials studied in [15], it is
required to make all wavefunctions appearing in the RG equation well defined. Provided we
choose R̄ to be small enough that the waves have reached their asymptotic forms, the common
dependence on R can be factored. In addition, we take the interaction to act at some fixed set
of hyperangles � = �̄. Since the wavefunctions at small R are separable, all hyperangular
behaviour can also be factored out and this arbitrary choice will not affect the results. We can,
therefore, define

〈�p,k|V3|�p,k′ 〉 = R̄4�∗
p,k(R̄, �̄)�p,k′(R̄, �̄)V3(p, k, k′). (4)

In an EFT we aim to integrate out all the unknown short-range physics and replace it by
a three-body force which can be expanded in powers of the low-energy scales of the system.
The tool which allows us to determine the scaling behaviour of the terms in V3 is the RG [12].
The first step in setting this up is to impose a cut-off, �, to separate the low-energy states
which we wish to treat explicitly from the high-energy states which will be integrated out.

As in [15], we impose this cut-off on the DWs in equation (1). This ensures that the role
of the three-body force is related purely to short-range three-body physics. If the cut-off were
applied to free waves, it would also remove parts of the physics associated with the two-body
forces. This would have to be compensated by the three-body force, which would then satisfy
a far more complicated evolution equation.

We then renormalize the theory by making the effective interactions �-dependent and
demanding that observables should be independent of the cut-off. In particular we require
that T̃ 3 be independent of cut-off, ∂�T̃ 3 = 0. Differentiating the LS equation (3) for T̃ 3 then
leads, after the elimination of T̃ 3, to a differential equation for V3,

∂

∂�
V3(�) = −V3(�)

∂G2(p,�)

∂�
V3(�). (5)

The RG equation is then obtained by rescaling the potential V3 and all the low-energy scales
in this equation. As described below, the definition of the rescaled potential V̂3 depends upon
the form of the DWs close to the origin. The boundary conditions on V̂3 are that it should be
analytic in all rescaled energies and momenta. These follow from our requirement that the
terms in the three-body force arise from local six-point vertex terms in the EFT Lagrangian.
The �-dependence of the corresponding terms in V̂3 then allows us to classify them according
to some power counting.

The two-body forces in our EFT can be represented by contact interactions, or equivalently
by a boundary condition on the logarithmic derivative of the wavefunction when two of the
particles coincide [10]. This boundary condition, combined with the overall symmetries of
the wavefunction, leads to Efimov’s boundary condition on the three-body wavefunction [27],
as outlined in appendix A. This becomes separable in the limit where the hyperradius, R, is
much smaller than the two-body scattering length, a2.

After separating the Schrödinger equation, the long-range potential in each hyperangular-
momentum channel is an ISP (as it must, since all scales have been eliminated from the
problem). For three bosons in s-waves or two neutrons and a proton with total spin 1/2, the
ISP in the lowest hyperangular momentum is attractive. In order to resolve the ambiguity in
the wavefunctions for this potential, we need to form a self-adjoint extension.

We can do this by introducing a scale p∗ to fix the phase of the waves as R → 0. As
shown in appendix A, the form of the resulting DWs at small R is

�(R,�) ∼ ξs0(�) sin(s0 ln(p∗R) − θ), (6)
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where s0 � 1.006 is the magnitude of the smallest hyperangular momentum, θ is defined in
equation (A.14) and ξs0(�) is the hyperangular wavefunction. This form is unchanged (up to
an overall sign) by the replacement,

p∗ → p∗enπ/s0 , n ∈ Z, (7)

and so all of the values of p∗ in equation (7) define the same self-adjoint extension.

3. Infinite scattering length

In the limit of infinite two-body scattering length, Efimov’s separation of the Hamiltonian is
exact. If we assume also that the three-body force is diagonal in the hyperangular momentum
then the RG equations for the various channels are uncoupled. We introduce this approximation
here so that we can focus on the lowest hyperangular-momentum channel, which contains the
leading interactions. Later, when we derive general results, we shall not require it.

The higher hyperangular-momentum channels, si with i > 0, correspond to repulsive
ISPs. Their RG analysis is thus identical to the one in [15]. The LO terms behave like
(p/�0)

2si , where �0 is the scale of the underlying physics. The most important of these is the
LO interaction in the s1 = 4 channel, but even this is heavily suppressed. Similarly, in systems
which do not lead to attractive ISPs, the three-body forces are always suppressed by powers of
p/�0. Here we concentrate on the s0 channel in attractive systems, where three-body forces
are enhanced.

3.1. RG equation

The hyperradial Green function in the s0 channel is given by

g2(p;R,R′) = M

2π

∞∑
n=−∞

u(n)
s0

(R)u(n)
s0

(R′)
p2 + p2

n

+
M

π2

∫ ∞

0
dq

us0(q, R)us0(q, R′)
p2 − q2 + iε

. (8)

We use lower case to denote quantities in this channel, for example this Green function and
the potential v3, to differentiate them from those for the full problem. The DWs us0(p,R)

are simply solutions of the ISP Schrödinger equation (A.9). The bound states u(n)
s0

(R) have
energies which, from equation (A.17), form an infinite tower with geometric spacing,

En = −p2
∗

M
e2nπ/s0 . (9)

These respect the symmetry of equation (7).
Before we can write down the DWRG equation for the three-body force in this channel,

we must first decide how to handle the bound states. In the previous examples studied with
the DWRG method [15], the cut-off was applied purely to the high-energy continuum states.
In those examples, any bound states were shallow, with typical momenta much smaller than
the scale of the underlying physics, and so lay within the domain of the EFT. Here, however,
the lack of a ground state means that this is no longer true. The deeply bound states are
unphysical artefacts of our use of contact interactions to represent the two-body forces. In
keeping with the EFT philosophy these states should be truncated and their effects absorbed
into the effective three-body force. We choose to cut-off the Green function by removing all
states with energies outside the range −�2/M � E � �2/M:

g2(p;R,R′) = M

2π

∑
|pn|<�

u(n)
s0

(R)u(n)
s0

(R′)
p2 + p2

n

+
M

π2

∫ �

0
dq

us0(q, R)us0(q, R′)
p2 − q2 + iε

. (10)

We shall see that this truncation will lead to an RG equation with single-valued solutions.
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Using the separable form of the wavefunctions in equation (6), we can project the
differential equation (5) onto the s0 channel. We can then absorb the common angle-dependent
factor |ξs0(�̄)|2 into into the potential by defining

v3(p,�) = |ξs0(�̄)|2V3(p,�). (11)

Note that we have chosen to focus on potentials that depend only on energy since, as discussed
in [13, 15], these contain the leading perturbations. Inserting equation (10) into the projected
equation we get

∂v3(p,�)

∂�
= M

π2

[
|us0(�, R̄)|2

�2 − p2
− π

2

∞∑
n=−∞

∣∣u(n)
s0

(R̄)
∣∣2

p2 + p2
n

δ(� − pn)

]
v3(p,�)2. (12)

The first term is produced by cutting off the continuum states, and is similar to the expressions
in [13, 15]. The series of discontinuities represented by δ-functions results from the truncation
of the bound states.

Finally, to obtain an RG equation we need to rescale any low-energy scales in the problem.
In this case there is only on-shell momentum p, and we define p̂ = p/�. To form a
dimensionless potential, we multiply it by the mass M. We also take the expressions for the
wavefunctions near the origin, equations (A.13, A.19), and absorb the R̄-dependence into the
potential by defining

v̂3(p̂,�) = M

s0π2
sin2(s0 ln(p∗R̄) − θ)v3(p̂�,�). (13)

The rescaled potential v̂3 then satisfies the RG equation

�
∂v̂3

∂�
= p̂

∂v̂3

∂p̂
+

[
sinh(πs0)

[cosh(πs0) − cos(2s0 ln(�/p∗))](1 − p̂2)

− π

s0

∞∑
n=−∞

1

1 + p̂2
δ(p̂n(�) − 1)

]
v̂2

3, (14)

where p̂n(�) = pn/� = p∗ enπ/s0/�. Note that we write p̂n(�) as a function of � since we
do not rescale p∗, and so p̂n varies with �. As noted before [15], this type of RG equation is
more conveniently rewritten as a linear equation for 1/v̂3,

�
∂

∂�

(
1

v̂3

)
= p̂

∂

∂p̂

(
1

v̂3

)
− sinh(πs0)

[cosh(πs0) − cos(2s0 ln(�/p∗))](1 − p̂2)

+
π

s0

∞∑
n=−∞

1

1 + p̂2
δ(p̂n(�) − 1). (15)

This RG equation is the same as that for an attractive ISP in two dimensions. In fact
an attractive ISP in any number of dimensions leads to an equation of this form, because
the different real power of R̄ which appears in the short-distance wavefunctions exactly
compensates for the radial factor in the Jacobian. All that differs is a numerical factor in the
definition of v̂3, associated with the angular integration.

3.2. Solutions

The physically acceptable solutions to equation (14) must be analytic in p̂2 for small p̂. We
look first for fixed points, �-independent solutions. The power counting for terms in the
potential can be determined from the perturbations around a fixed point that scale with definite
powers of � [13, 15].
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An obvious fixed point is the trivial one, v̂3 = 0. The power counting based on it can be
found by substituting

v̂3 = C�µφ(p̂) (16)

into the RG equation (14), and linearizing to get the eigenvalue equation

p̂
dφ

dp̂
= µφ. (17)

This is easily solved, giving φ(p̂) = p̂µ. Imposing the boundary condition of analyticity in
p̂2, leads to the eigenvalues µ = 0, 2, 4, . . . . Hence the general solution in the region of this
fixed point is

v̂3(�, p̂) =
∞∑

n=0

C2n�
2np̂2n. (18)

The leading term in this expansion is marginal, that is, it does not scale with any power of �.
We therefore expect to find logarithmic dependence on � associated with this perturbation.

These logarithms become large as � → 0 and to resum them we need to construct
solutions of the full nonlinear RG equation. In fact �-dependence of the right-hand side of
equation (14) means that no other fixed-point solution can be found. However, that dependence
is only logarithmic and so we may look for a solution that also depends only logarithmically
on �. Perturbations about such a solution can still be used to construct a power counting.

As in [15], our starting point for constructing a nontrivial solution to the RG is the basic
loop integral, which in this case is given by

Î (p̂,�) = P
∫ 1

0
dq̂

q̂ sinh(πs0)

[cosh(πs0) − cos(2s0 ln(�q̂/p∗))](p̂2 − q̂2)
. (19)

By substituting this for 1/v̂3 in equation (15), it is straightforward to verify that it satisfies the
continuous version of the equation (without the discontinuities of the final term). However, it
is not yet an acceptable solution since, apart from missing the bound state discontinuities, it is
nonanalyitic for small p̂.

The propagator pole at q̂ = p̂ in the integrand approaches the endpoint of the integral as
p̂ → 0, leading to logarithmic dependence of Î on p̂. To avoid this, we look for a similar
integral over some contour in the complex q̂-plane that avoids the singular region.

We first rewrite the integrand as

1

2i

q̂

(p̂2 − q̂2)

[
cot

(
s0 ln

�q̂

p∗
− iπs0

2

)
− cot

(
s0 ln

�q̂

p∗
+

iπs0

2

)]
, (20)

so that I becomes

I (p̂,�) = P
∫ 1

−1
dq̂h(q̂), (21)

where

h(q̂) = 1

2i

q̂

(p̂2 − q̂2)
cot

(
s0 ln

�q̂

p∗
− iπs0

2

)
. (22)

The dangerous region around q̂ = 0 is not at an endpoint of this integral, and so we are free to
avoid it by deforming the contour of integration into the complex plane. We therefore define

̂ (p̂,�) =
∫

C

dq̂h(q̂), (23)

where the contour C runs from q̂ = −1 to q̂ = 1 in the upper half plane, as in figure 1.
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p̂p̂

ip̂

ip̂

ip̂

C

−−1 1

q̂

n

n+1

n−1

Figure 1. The contour C in the complex q̂-plane used to construct the solution ̂ (p̂,�) of the
DWRG equation. The bound-state poles of the integrand occur at q̂ = ip̂n = ip∗enπ/s0 /� and the
propagator poles at q̂ = ±p̂.

Figure 1 also shows the pole structure of the integrand h(q̂). Apart from the two propagator
poles at q̂ = ±p̂, there are bound-state poles at

q̂ = ip̂n(�) = i
p∗
�

enπ/s0 . (24)

These poles are important since their positions vary with � and so they can cross our integration
contour. When this happens they generate discontinuities in ̂ (p̂,�). By choosing our contour
to cross the imaginary axis at q̂ = i (corresponding to an energy E = −�2/M), we can arrange
for these discontinuities to match precisely those we require in equation (15). To see this, note
that as � is varied from pn − ε to pn + ε, the pole at q̂ = ip̂n crosses the contour and produces
a discontinuity

[̂ (p̂,�)]�=pn+ε

�=pn−ε = −2π iR[h(q̂), ip̂n] = π

s0

1

1 + p̂2
, (25)

where R[f (z), z0] denotes the residue of f (z) at the pole z0. This is precisely the strength of
the δ-function at pn(�) = 1 in equation (15).

The integral ̂ (p̂,�) satisfies the full RG equation (15) and is analytic about p̂2 = 0. We
therefore define the rescaled potential by

v̂
(0)
3 (p̂,�) = [̂ (p̂,�)]−1. (26)

The logarithmic dependence on � has been resummed to all orders in this potential. The
invariance under equation (7) means that the dependence on ln � is periodic. As pointed
out by Wilson [37], this periodic behaviour provides an example of a limit cycle of the RG.
The cycle contains one discontinuity every period, when a bound state is removed from the
low-energy domain.

Like a fixed point, the limit-cycle solution can be used to define a power counting for the
perturbations around it. Because the RG equation in the form of equation (15) is linear in
1/v̂3, it is possible to construct exact solutions containing these perturbations,

1

v̂3(p̂,�)
= 1

v̂
(0)
3 (p̂,�)

+
∞∑

n=0

C2n�
2np̂2n. (27)

The perturbations around the cycle thus have exactly the same power counting as those around
the trivial fixed point. The leading, energy-independent term is marginal. Each additional
power of energy (p̂2) gives a term two orders higher in �.
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The general solution, equation (27), shows that there is a family of limit cycles
parametrized by the marginal perturbation C0. This lack of uniqueness arises because the
marginal perturbation is �-independent and satisfies the homogeneous version of the RG
equation (15). As a result, an arbitrary amount of it can be added to the limit-cycle solution,
equation (26). The leading perturbation around any cycle is marginal because it pushes the
solution into a nearby cycle. In the limit C0 → ∞, the entire cycle is compressed into the
trivial fixed point v̂3 = 0, which can be regarded as the limiting member of the family of
cycles. All other perturbations vanish as � → 0 and hence are stable. Any more general
solution will thus tend to one of the limit cycles as � → 0.

The truncation of bound states ensures that our solution of the RG equation is single
valued. Our choice of a cut-off that is symmetric between positive and negative energies
corresponds to a particular path from q̂ = −1 to +1 for the contour C. Other prescriptions
are equally acceptable since physical observables should not depend on them. The resulting
solutions, corresponding to different choices of path, could be regarded as different branches
of a general multi-valued solution. Such multi-valuedness appears in other methods used to
renormalize the three-body problem, as in [20–23].

3.3. Scattering observables

To relate the parameters appearing in our solution, equation (27), to scattering observables,
we need to construct the corresponding T-matrix. If we use the separable form of the
wavefunctions, we can define a DW T-matrix t̃3 in an analogous manner to equation (12).
Projecting the LS equation (3) onto the s0 channel, we get the corresponding equation for t̃3.
With our choice of energy-dependent potential, this can be solved directly to get the on-shell
T-matrix,

〈u−
p |t̃3(p)

∣∣u+
p

〉 = e2iδ2(p)|up(R̄)|2v3(p,�)[1 − g2(p,�; R̄, R̄)v3(p,�)]−1, (28)

where the superscripts ± denote waves with incoming or outgoing boundary conditions, and
δ2 is the phase shift in the s0 channel produced by the pairwise forces alone.

Unitarity and conservation of hyperangular momentum allow us to express this in terms
of a phase-shift as

e2iδ2(p)

〈u−
p |t̃3(p)

∣∣u+
p

〉 = − M

2πp
(cot δ̃3(p) − i). (29)

Here δ̃3 is the additional phase shift produced by the three-body force. It is related to the full
phase shift δ by δ̃3 = δ − δ2. Using the fact that our potential acts at R = R̄, we can combine
equations (28) and (29) to obtain an equation relating v3 and the phase shift:

|up(R̄)|2 M

2πp
(cot δ̃3 − i) = g2(p,�; R̄, R̄) − v3(p,�)−1. (30)

When we use the expression in equation (10) for the regularized Green function and the
explicit forms of the wavefunctions from appendix A, we find that the R̄ dependence can be
factored out to leave
π

2

(
sinh(πs0)

cosh(πs0) − cos(2s0 ln(p/p∗))

)
(cot δ̃3(p) − i)

=
∫ �

0

q sinh(πs0) dq

[cosh(πs0) − cos(2s0 ln(q/p∗))](p2 − q2 + iε)

+
π

s0

∑
|pn|<�

p2
n

p2 + p2
n

− 1

v̂3(p/�,�)
. (31)
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To write this in a form which is explicitly independent of �, we introduce the rescaled variable
q̂ = q/� and substitute our solution for v̂3 from equation (27). This gives
π

2

(
sinh(πs0)

cosh(πs0) − cos(2s0 ln(p/p∗))

)
(cot δ̃3(p) − i)

=
∫ 1

−1
dq̂h(q̂) −

∫
C

dq̂h(q̂) − 2π i
∑

|pn|<�

R[h(q̂), ipn/�] −
∞∑

n=0

C2np
2n, (32)

where h(q̂) is defined above in equation (21), and we have used the fact that the sum over the
bound states can be expressed in terms of the residues at the poles (see equation (25)).

The two integrals over h(q̂) can be combined to form a single integral round a closed
contour. The iε prescription in the first integral implies that the contour of integration encloses
the propagator pole at q̂ = p̂ but not the one at q̂ = −p̂. It also encloses the bound-state poles
at q̂ = ipn/� with pn < �. Using Cauchy’s theorem, we find that the residues from these
exactly cancel the sum over bound states in equation (32).

Finally, we are left with a DW effective-range expansion,(
sinh(πs0)

cosh(πs0) − cos(2η(p))

)
(cot δ̃3(p) − i) = cot

(
η(p) +

iπs0

2

)
− 2

π

∞∑
n=0

C2np
2n, (33)

where η(p)) = −s0 ln(p/p∗) is defined in equation (A.15). Making use of trigonometric
addition formulae, one can show that the imaginary parts of the left and right sides are
equal. In this expansion, all nonanalytic behaviour has been subtracted or factored out into
the trigonometric functions of ln p. The remaining energy dependence can be expanded in
powers of p2, and the terms correspond directly to perturbations around the limit cycle.

The roles of the limit-cycle potential and its marginal perturbation C0 are not obvious
from equation (33) and so, to clarify these, we construct the total phase shift, δ. Making use
of equations (33) and (A.16), the corresponding full S-matrix can be written as

e2iδ(p) = i
Z∗(p)

Z(p)
, (34)

where

Z(p) = cos
(
η(p) +

iπs0

2

)
− 2

π
sin

(
η(p) +

iπs0

2

) ∞∑
n=0

C2np
2n. (35)

For the limit-cycle solution of equation (26) with no perturbations (all C2n = 0), we have

Z(p) = cos
(
η(p) +

iπs0

2

)
. (36)

Comparing this to equation (A.16) for the pure long-range force, we see that the phase η(p)

of the waves near the origin has been shifted by π/2. This implies, for example, that the
bound states lie at p = ie−π/2s0pn, which correspond to the geometric means of the bound
state energies for v3 = 0. This potential thus corresponds to the system which is ‘furthest
away’ from the one with v3 = 0, in the sense that it leads to the maximum possible changes
to physical observables.

To elucidate the role of the marginal perturbation, it is convenient to express its coefficient
in terms of an angle σ ,

C0 = −π

2
cot σ, (37)

and to redefine the other short-distance parameters according to

2

π

∞∑
n=1

C2np
2n = csc σ

∑∞
n=1 C ′

2np
2n

sin σ + cos σ
∑∞

n=1 C ′
2np

2n
. (38)
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In terms of the new parameters, σ and C ′
2n, n � 1 we find that the S-matrix can still be written

in the form of equation (34), but with Z(p) replaced by

Z′(p) = sin
(
η(p) + σ +

iπs0

2

)
+ cos

(
η(p) + σ +

iπs0

2

) ∞∑
n=1

C ′
2np

2n. (39)

This form makes it clear that σ (or rather C0) just has the effect of shifting the phase η(p).
Scattering observables depend only on the combination

p′
∗ = e−σ/s0p∗, (40)

and not on p∗ and C0 separately. This shows that p∗ and C0 play the same role in determining
the phase of the wavefunctions for R → 0 (the self-adjoint extension of the Hamiltonian).
We can use C0 to change the self-adjoint extension from the initial one specified by p∗ to any
other. In particular, σ = 0 (corresponding to the trivial fixed point) leaves the initial extension
unchanged, whereas σ = π/2 (C0 = 0) produces the largest possible change in the extension,
as already noted. Furthermore, there is a one-to-one mapping between all possible limit-cycle
solutions (obtained by varying C0 from −∞ to +∞ or equivalently σ between 0 and π ) and
the self-adjoint extensions. This is in marked contrast to the relationship between p∗ and the
self-adjoint extensions, where infinitely many equivalent p∗ give the same extension.

The bound states of the system are given by the zeros of Z′(p). For any short-range
potential, the bound states still accumulate at zero energy, as expected since they are
consequences of the inverse-square tail of the long-range potential. The shallower bound
states are insensitive to the short-range perturbations, C ′

2n with n � 1. Their positions are
controlled by p′

∗ rather than the original p∗. If we choose p∗ to give the correct shallow
Efimov states, we can set σ = 0 and use the expansion around the trivial fixed point. This
corresponds to expanding a DW K-matrix and has the form

tan δ̃3(p)

sinh(πs0)
=

∑∞
n=1 C ′

2np
2n

cosh(πs0) − cos(2η(p)) + sin(2η(p))
∑∞

n=1 C ′
2np

2n
. (41)

The deeper bound states are of course strongly affected by the higher order perturbations
and will not in general follow the simple constant-ratio pattern of the Efimov states. At some
point they will fall outside the range of validity of the EFT, and so we can say nothing about
them, except that some short-range physics must act to ensure the existence of a ground state.

4. Finite scattering length

In the general case of finite scattering length it no longer makes sense to expand observables in
terms of the hyperangular wavefunctions, instead we must consider a much more general RG
equation. In particular, the low-energy scales now include γ = 1/a2 where a2 is the two body
scattering length. This can also be thought of as the typical momentum in the low-lying bound
or virtual state of two particles. The coupling between waves with different hyperangular
momenta means that the states should now depend on the relative momentum k of a pair, as
well as the total energy, expressed as a momentum p. Nonetheless, Efimov’s separation of
variables still applies whenever the distances between the three particles are all much less than
the two-body scattering length [27]. It, therefore, controls the short-distance behaviour of
the three-body wavefunction in an EFT with contact interactions and hence the scaling of the
short-range three-body interactions. For attractive three-body systems, the the basic pattern
of the RG evolution is similar to that in the previous.
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The truncated Green function is given by equation (1) restricted to states inside the energy
range −�2/M � E � �2/M:

G2(p) = M

4π

∑
|pn|<�

|�n〉〈�n|
p2 + p2

n

+
M

2π2

∫ �2

−γ 2
d(q2)

1

p2 − q2 + iε

×
[
|�q,iγ 〉〈�q,iγ | + ϑ(q2)

2

π

∫ q

0
dk|�q,k〉〈�q,k|

]
. (42)

Inserting this into equation (5) and using equation (4) we obtain a differential equation for the
potential

∂V3(p, γ, k, k′;�)

∂�
= −MR̄4

2π2

1

p2 − �2

[
V3(p, γ, k, iγ ;�)|��,iγ (R̄, �̄)|2V3(p, γ, iγ, k′;�)

+
2

π

∫ �

0
dk′′V3(p, γ, k, k′′;�)|��,k′′(R̄, �̄)|2V3(p, γ, k′′, k′;�)

]

− MR̄4

4π

∞∑
n=0

|�n(R̄, �̄)|2
p2 + p2

n

δ(� − pn)V3(p, γ, k, ipn/3;�)

×V3(p, γ, ipn/3, k′;�). (43)

For R 
 a2 all the DWs will be dominated by the s0 channel and will therefore tend to
the forms

|�p,k(R,�)|2 ∼ 1

p
D3(p, k, γ, p∗)|ξ(�)|2 sin2(s0 ln(p∗R) − θ)

R4
,

|�p,iγ (R,�)|2 ∼ D2(p, γ, p∗)|ξ(�)|2 sin2(s0 ln(p∗R) − θ)

R4
,

|�n(R,�)|2 ∼ p2
nD

(n)
B (γ, p∗)|ξ(�)|2 sin2(s0 ln(p∗R) − θ)

R4
.

(44)

The various normalization functions, D3,D2 andD(n)
B , are determined by the external boundary

conditions on the DWs. They can be found by solving the full Faddeev equations (or
equivalents). These functions are essential to the RG discussion, since it is through them
that information about the long-distance physics is communicated to short distances.

The forms of the DWs above were chosen to ensure that the normalization functions are
dimensionless. They have a common dependence on the hyperangles given by the function

ξ(�) = As0

3∑
i=1

2

sin(2ϕi)
sinh

( s0π

2
− s0ϕi

)
, (45)

where ϕi is the hyperangle defined in appendix A. Since this dependence can be factored out
of the Green function G2(p) at small R, it is unimportant to the RG discussion. In this context,
it is convenient to define a Green function with this common short-distance behaviour divided
out,

G2(p, γ, p∗) = 2π2R̄4

M

G2(p; R̄, �̄; R̄, �̄)

|ξ(�̄)|2 sin2(s0 ln(p∗R̄) − θ)
. (46)

Using the forms of the DWs given in equation (44) we define our rescaled potential by

V̂ 3(p̂, γ̂ , k̂, k̂′;�) = M

2π2
|ξ(�̄)|2 sin2(s0 ln(p∗R̄) − θ)V3(p, γ, k, k′;�), (47)
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where, as usual, p̂ = p/�, etc. We also require rescaled versions of the normalization
functions D, which we define by

D̂3(k̂, γ̂ ,�) = D3(�,�k̂,�γ̂ , p∗), D̂2(γ̂ ,�) = D2(�,�γ̂ , p∗),

D̂(n)
B (γ̂ ,�) = D(n)

B (�γ̂ , p∗),
(48)

and the similarly rescaled Green function,

Ĝ2(γ̂ ,�) = G2(�,�γ̂ , p∗). (49)

Note that p∗ and � are the only scales in these dimensionless functions and hence they occur
only in the ratio �/p∗. To simplify notation, we have suppressed the dependence on p∗.

The rescaled potential V̂ 3 satisfies the RG equation

�
∂V̂ 3

∂�
= p̂

∂V̂ 3

∂p̂
+ γ̂

∂V̂ 3

∂γ̂
+ k̂

∂V̂ 3

∂k̂
+ k̂′ ∂V̂3

∂k̂′

+
1

1 − p̂2

[
V̂ 3(p̂, γ̂ , k̂, iγ̂ ;�)D̂2(γ̂ ,�)V̂ 3(p̂, γ̂ , iγ̂ , k̂′;�)

+
2

π

∫ 1

0
dk̂′′V̂ 3(p̂, γ̂ , k̂, k̂′′;�)D̂3(k̂

′′, γ̂ ,�)V̂ 3(p̂, γ̂ , k̂′′, k̂′;�)

]

+
π

2

∞∑
n=0

D̂(n)
B (γ̂ ,�)

1

1 + p̂2
δ(p̂n(�) − 1)V̂ 3(p̂, γ̂ , k̂, ip̂n/3;�)

× V̂ 3(p̂, γ̂ , ip̂n/3, k̂′;�). (50)

The boundary conditions on V̂ 3 are that it be analytic in p̂2, γ̂ , k̂2 and k̂′2. Again these follow
from our requirement that the potential arises from six-point contact terms in the effective
Lagrangian.

In the D̂ and the rescaled bound-state momenta p̂n(�) the only explicit dependence on
� occurs as a ratio with the scale p∗ introduced, as before, by the self-adjoint extension. All
quantities appearing in the RG equation are invariant under the transformation in equation (7)
and hence are periodic in p∗. Furthermore, this implies that the equation must be unchanged
under

� → � e−nπ/s0 , n ∈ Z. (51)

In interpreting this for the bound state momenta p̂n(�) we need to be careful. Depending on
how we label the states, these momenta may not obey the symmetry individually. However,
the complete set must always obey it collectively.

To see how this happens, consider the entire rescaled spectrum, p̂n, at some initial scale
� = �1. As � decreases the rescaled bound state momenta increase, until at � = �1 e−π/s0

the spectrum has shifted so that p̂n(�) = p̂n+1(�
′). This is similar to what happened in

the case of infinite scattering length, except that a new bound state must have appeared at
threshold and moved down to p̂0(�1). This is possible because in following the RG flow we
keep the rescaled quantity γ̂ fixed, not the physical value γ . The spectrum at � = �1 e−π/s0

is thus identical to that at �1. If we label the bound states so that p̂0(�) always refers to the
shallowest, then each of the p̂n(�) will be invariant under equation (51).

The general RG equation is complicated because it includes couplings between the
different three-body channels. As a starting point, we consider a solution which is independent
of the two relative momenta, k̂ and k̂′. This simplifies the equation considerably since it allows



Effective theories of scattering 711

p̂p̂

ip̂

ip̂

C

−−1 1

q̂

0

1

iγ

Figure 2. The contour C used to construct the DWRG solution Ĵ (p̂, γ̂ , �). The bound-state
poles of the integrand H(q̂) occur at q̂ = ip̂n. The branch cut running down the imaginary axis
corresponds to the 2 + 1 elastic continuum. This is joined by a cut starting at q̂ = 0 corresponding
to the three-body continuum. There are also propagator poles at q̂ = ±p̂.

us to divide through by V̂ 3(p̂, γ̂ ;�)2 and obtain a linear equation for 1/V̂ 3,

�
∂

∂�

(
1

V̂ 3

)
= p̂

∂

∂p̂

(
1

V̂ 3

)
+ γ̂

∂

∂γ̂

(
1

V̂ 3

)
− 1

1 − p̂2
P̂ (γ̂ ,�)

+
π

2

∞∑
n=0

D̂(n)
B (γ̂ ,�)

1

1 + p̂2
δ(p̂n(�) − 1), (52)

where we have introduced the function

P̂ (γ̂ ,�) = D̂2(γ̂ ,�) +
2

π

∫ 1

0
dk̂′′D̂3(k̂

′′, γ̂ ,�). (53)

This function can be thought of as the (rescaled) short-distance part of the projection operator
onto continuum states with energy E = �2/M .

Our strategy for solving equation (52) will mirror that used in the simpler case of infinite
scattering length. As before, we can immediately write down a solution to the continuous
equation using an equivalent to the basic loop integral, equation (19). Again this does not
satisfy the analyticity boundary conditions because of the singular behaviour of the integrand
at the endpoint q̂ = 0. Also, this solution does not contain the discontinuities at the bound
states. We therefore need a generalization of equation (20) which allows us to write the
solution as a contour integral that avoids q̂ = 0.

Guided by the results for infinite scattering length, we define an integral along the same
contour C as before,

Ĵ (p̂, γ̂ , �) =
∫

C

dq̂H(q̂), (54)

where

H(q̂) = i

π

q̂

p̂2 − q̂2
Ĝ2(γ̂ /q̂, q̂�). (55)

The contour C is shown in figure 2 along with the singularity structure of H. This structure
follows straightforwardly from the form of Ĝ2 and is derived in appendix B.

In appendix B we also show that the function P̂ (γ̂ ,�) in equation (52) can be rewritten
in terms of Ĝ2 as

P̂ (γ̂ ,�) = i

π
(Ĝ2(γ̂ ,�) − Ĝ2(−γ̂ ,−�)). (56)
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This result can then be used to show that Ĵ (p̂, γ̂ ,�) satisfies the continuous part of
equation (52). In addition, the bound state poles in H cross the contour of integration at
p̂n = 1 and so produce the necessary discontinuities. Finally, the contour never approaches
the branch points at q̂ = 0 and q̂ = iγ̂ and so the integral is analytic in the small scales. This
allows us to take our nontrivial solution to the DWRG equation to be

V̂
(0)
3 (p̂, γ̂ ,�) = [Ĵ (p̂, γ̂ , �)]−1. (57)

The periodic dependence on � of all quantities appearing in the DWRG equation (52)
implies that our solution V̂

(0)
3 (p̂, γ̂ ,�) must also be periodic. Like the analogous solution for

infinite scattering length, it is therefore a limit-cycle of the DWRG.
As a result, it must have an infinite number of discontinuities as � → 0, which follow

a periodic pattern according to this symmetry. At first glance this may seem odd since these
discontinuities are associated with the truncation of bound states and there are only a finite
number of bound states in the truncated Green function. However, as � is lowered for fixed
γ̂ , new bound states appear in the rescaled spectrum as discussed above.

Now that we have obtained a limit-cycle solution, the analysis proceeds along very similar
lines to that in the previous section. The perturbations in p̂ and γ̂ are simple to derive and,
since equation (52) is linear, they give exact solutions to the DWRG equation:

1

V̂ 3(p̂, γ̂ ,�)
= 1

V̂
(0)
3 (p̂, γ̂ ,�)

+
∞∑

n,m=0

C2n,m�2n+mp̂2nγ̂ m. (58)

The main features of the power counting are unaffected by the addition of the new scale γ .
The LO perturbation is still marginal, and leads to a family of limit-cycles parametrized by
C0,0. Although it is more difficult to show here, the analysis of the infinite-scattering-length
case suggests that the marginal perturbation C0,0 and the scale p∗ must represent the same
three-body physics in the EFT.

The previous power-counting is supplemented by terms proportional to powers of γ . In
many systems, such as those of interest in nuclear physics, the two-body scattering lengths
and hence γ are fixed. This means that these terms cannot be determined separately but
must be absorbed into the coefficients of the energy-dependent perturbations. However, in
atomic systems with tunable Feshbach resonances, it may be possible to vary γ and hence to
disentangle the energy- and γ -dependent perturbations.

The full set of perturbations also includes ones that depend on the relative momenta. The
forms of these have been derived and their eigenvalues show that they occur at the same orders
as the corresponding energy-dependent perturbations. The full expressions are very unwieldy
and so the interested reader is referred to [18].

Having obtained a solution to the RG equation we can substitute it back into the LS
equation to obtain the corresponding DW T-matrix. The algebra again follows that for systems
with infinite scattering length. In the present case, the truncated Green function involves an
integral around the branch cut corresponding to elastic scattering of a single particle on a
bound pair below the three-body threshold. This 2 + 1 continuum cut runs along the imaginary
q̂-axis from iγ̂ , as shown in figure 2. Using the form for the three-body force given in
equation (58) we find that the DW T-matrix element for 2 + 1 elastic scattering can be
written as

2π2

M

D2(p, γ, p∗) e2iδ2(p)

〈�−
p,iγ |T̃ 3(p)

∣∣�+
p,iγ

〉 = −G2(p, γ, p∗) +
∞∑

n,m=0

C2n,mp2nγ m. (59)

Using the properties of G2 in appendix B, one can show that T̃ 3(p) respects unitarity for
p2 < 0, as it should. For p2 > 0, the coupling to three-body break-up channels, mean
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that T-matrix for 2 + 1 scattering does not respect unitarity on its own. The same effective
potential could be used to calculate amplitudes for break-up and 3 → 3 scattering. However,
in practice this is likely to require general momentum-dependent potentials to describe all
possible interaction channels.

The DW T-matrix can be related to the elastic-scattering phase shift, δ, by

e2iδ2(p)

〈�−
p,iγ |T̃ 3(p)

∣∣�+
p,iγ

〉 = − M

4π
[cot(δ(p) − δ2(p)) − i], (60)

where δ2 is the phase shift produced by pairwise forces only. This allows us to rewrite
equation (59) in the form of a DW effective-range expansion,

π

2
D2(p, γ, p∗)[cot(δ(p) − δ2(p)) − i] − G2(p, γ, p∗) = −

∞∑
n,m=0

C2n,mp2nγ m. (61)

Unlike the standard effective-range expansion for three-body systems (see, e.g., [27]), this
expression provides an expansion of the residual scattering after the effects of the two-body
interaction have been removed. In it, all of the nonanalytic dependences on p and γ have been
absorbed into the functions D2(p, γ, p∗), G2(p, γ, p∗) and δ2(p) to leave a quantity that can
be expanded in powers of energy (p2) and γ . Note that, in contrast to the case of infinite
scattering length, the functions here need to be determined numerically. As a result there
are no simple analytic expressions for the T- and S-matrices, such as equations (33) and (34)
above.

5. Discussion

In this paper we have applied a DW version of the RG to three-body scattering. This is based
on cutting off the full solutions in the presence of long-range interactions [15]. In three-body
systems, these long-range forces are generated by point-like interactions between pairs of
particles. By imposing the cut-off on the DWs we ensure that it affects only the contributions
of the short-range three-body forces, and does not alter the two-body physics. Demanding that
observables are independent of the cut-off then leads to an RG equation for the renormalized
three-body interactions.

As shown by Efimov [27], a three-body system with contact interactions can be described
by an ISP in the region where they are all close together. Hence the RG in presence of this
rather singular potential controls the behaviour of the three-body forces and determines their
power counting.

For systems of three bosons or two neutrons and a proton with total spin 1/2, the resulting
ISP is attractive. This leads to quite different behaviour compared with previous examples
studied with this type of RG [13, 15]. The wavefunctions show oscillatory behaviour at
short distances and a self-adjoint extension is needed to fix their phase and hence give well-
defined eigenfunctions [29, 33–35]. These oscillatory functions control the RG flow of the
short-distance potential, which tends to a limit cycle [37] rather than a nontrivial fixed point.

These results are general for an attractive ISP in any number of dimensions. The lack of
a ground state for such a potential means that it has deeply bound states that lie outside the
domain of validity of our effective theory. This means that the cut-off should truncate not only
high-energy scattering states but also these deeply bound states. This leads to a three-body
force that has periodic discontinuities, but is single valued.

The full three-body interaction can be built out of perturbations around this single-valued
limit-cycle solution. The lowest-order term is marginal, in the sense that its RG flow is only
logarithmic in the cut-off. From its effect on observables, we have seen that this term is
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equivalent to changing the parameter in the self-adjoint extension or, in other words, the phase
of the short-distance wavefunctions.

To express the resulting power counting in a form which matches that usually used
[8, 9], we can assign an order d = µ − 1 to a term in the rescaled potential proportional to
�µ. Then a term proportional to p2n (or En) appears at order d = 2n − 1. The coefficients in
our potential have direct, and relatively simple, connection to scattering observables.

The same behaviour is found in an attractive three-body system with finite two-body
scattering length, a2, since the wavefunctions tend to the Efimov form at short distances
(R 
 a2). Hence the RG flow has a very similar pattern, tending to a limit cycle. In this case,
the power counting should be extended to include terms involving powers of the low-energy
scale γ = 1/a2. A term proportional top2nγ m is of order d = 2n + m − 1. For the energy-
dependent perturbations, this counting agrees with that found by Bedaque et al [23] from the
STM equation. Because of the clean separation of the short- and long-range physics in the
DWRG approach we are able to state the counting in an algebraically much simpler way.

We are also able to extend the counting to terms involving powers of γ . This may not be
relevant to applications in nuclear physics, where the two-body scattering lengths are fixed,
but in atomic systems it may be possible to use Feshbach resonances to vary the scattering
length, and hence to disentangle the two types of perturbation.

The leading, marginal three-body force, or equivalently the choice of self-adjoint
extension, is of interest since it shows that one piece of three-body physics is needed to
determine low-energy three-body observables. It has long been known that the ‘Phillips line,’
a correlation between the J = 1

2 nd scattering lengths and triton binding energies predicted by
model nucleon–nucleon potentials [5] can be explained by three-body interactions [6]. EFT
approaches, such this work and [20, 23], provide a systematic way to do this, which can be
extended to include higher order interactions and couplings to external currents.

At leading order (d = −1), three-body observables are determined by the two-body
scattering length and the marginal three-body force. The first correction to this arises from
the two-body effective range, which appears at order d = 0. Including this has been shown to
give good agreement with J = 1

2 nd observables, in calculations using the STM equation [23]
and an equivalent equation in coordinate-space [18]. The first energy-dependent three-body
force appears only at next-to-next-to-leading order, d = 1 in this counting.

It should be possible to extend our approach to three-body scattering above the break-
up threshold. However, this will introduce couplings between various channels and so will
involve momentum-dependent perturbations in the effective potential. This is likely to require
similar analyses to those which have been applied to simpler coupled-channel systems, such
as that considered in [44].
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Appendix A. Efimov wavefunctions

We summarize here the essential elements of Efimov’s approach to the three-body problem
[27], since this provides the wavefunctions we need to elucidate the scaling of the three-body
interactions.
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We consider the case of s-wave scattering. In general, the wavefunctions |�p,k〉 must be
found using the Faddeev equations or equivalent (see, e.g., [42]). In the Faddeev formalism, the
wavefunction is broken into three components according to the pair of particles that interacted
last. The component in which particles 2 and 3 interacted last is denoted by ψ

(1)
p,k(r23, r1),

where r23 and r1 are the usual Jacobian coordinates for three bodies with equal masses.
For particles interacting via pairwise contact interactions, Efimov observed that

ψ
(i)
p,k(rjk, ri) satisfies a free two-dimensional Schrödinger equation, subject to a boundary

condition relating the wavefunction at the points rjk = 0 and ri = rjk/2 where pairs of
particles interact. This boundary condition takes the form[

∂ψ
(i)
p,k(R, ϕi)

∂ϕi

]
ϕi=0

+
8λ√

3
ψ

(i)
p,k(R, π/3) = R

a2
ψ

(i)
p,k(R, 0), (A.1)

where λ is a factor related to the wavefunction symmetry, and R and ϕi are the hyperradius
and hyperangle respectively, and are defined by

R =
√

4

3
r2
i + r2

jk, ϕi = arctan

√
3rjk

2ri

. (A.2)

For three bosons, the full wavefunction can be expressed as

�p,k(R,�) =
3∑

i=1

2

R2 sin(2ϕi)
ψ

(i)
p,k(R, ϕi), (A.3)

where � represents five general hyperspherical coordinates that complement R. (The other
coordinates could be ϕi and two angles each for ri and rjk , but their exact specification will
not be needed here.)

We shall assume that the DWs are normalized by∫ ∞

0
R5 dR

∫
d��p,k(R,�)�p′,k′(R,�) = π2

4
δ(p2 − p′2)δ(k − k′), (A.4)

∫ ∞

0
R5 dR

∫
d��p,iγ (R,�)�p′,iγ (R,�) = π

2
δ(p2 − p′2), (A.5)

∫ ∞

0
R5 dR

∫
d��n(R,�)�n(R,�) = 1. (A.6)

Because the boundary condition couples R and ϕi , the equations are, in general, extremely
difficult to solve (see, e.g., [45]). However, when R 
 a2 the boundary condition becomes
separable. In this limit we may label the states in terms of the centre-of-mass energy and the
hyperangular momentum, s. We can write the solutions in the form

ψ(i)
p,s(R, ϕi) = As sin

( sπ

2
− sϕi

)
us(p,R). (A.7)

This satisfies the angular Schrödinger equation subject to the boundary condition of vanishing
amplitude at ϕi = π/2 (ri = 0). The boundary condition, equation (A.1), now results in a
transcendental equation for s,

s cos
sπ

2
= 8λ√

3
sin

sπ

6
. (A.8)

This equation was also obtained much earlier by Danilov [43] using the momentum–space
equation derived by Skorniakov and Ter–Martirosian [24].
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The resulting radial Schrödinger equation has the form

−d2us(p,R)

dR2
− 1

R

dus(p,R)

dR
+

s2

R2
us(p,R) = p2us(p,R), (A.9)

and so contains an ISP whose strength is determined by s, and hence depends on the symmetry
parameter. This Hamiltonian is scale free, which should not be surprising given that it
corresponds to the nontrivial fixed point of the two-body system. For three bosons or a
neutron and deuteron with spin-1/2, the symmetry parameter is λ = 1, while for three
nucleons with spin-3/2 it is λ = −1/2. In the latter case, equation (A.8) has real solutions
and inverse-square potential provides a repulsive ‘centrifugal barrier’. The power counting for
short-range interactions in the presence of this potential can be derived using the RG method
of [15].

The case with λ = 1 is more interesting, since the lowest solutions to equation (A.8) are
imaginary,

s = ±is0 = ±i1.006 . . . , (A.10)

and so they correspond to an attractive ISP. For small R the solutions to the corresponding
radial equation have the forms

us0(p,R) ∝ R±is0 . (A.11)

These are both equally (ir)regular as R → 0. They can also describe flux disappearing or
being created at the origin, corresponding to the classical ‘fall into the centre’ which is possible
for this potential [32]. To obtain well-defined wavefunctions which respect flux conservation,
we need to impose a boundary condition on the wavefunctions for R → 0, requiring equal
admixtures of the two complex solutions and fixing their relative phase. Mathematically,
this is known as choosing a self-adjoint extension of the Hamiltonian in equation (A.9), as
discussed by Bawin and Coon [29] and references therein.

The full solutions to the Schrödinger equation with an attractive ISP can be written in
terms of Bessel functions of imaginary order,

us0(p,R) =
√

pπ

2

1

2i|sin(η(p) + iπs0/2)|
[
eiη(p)Jis0(pR) − e−iη(p)J−is0(pR)

]
, (A.12)

where p = √
ME and the normalization has been fixed by requiring that us0(p,R) ∼

sin(pR + δ)/
√

R for large R. For small R, these wavefunctions have the form

us0(p,R) ∼
√

p sinh(πs0)

s0[cosh(πs0) − cos(2η(p))]
sin(s0 ln(pR) + η(p) − θ), (A.13)

where

θ = arg �(1 + is0) + s0 ln 2. (A.14)

Demanding that these waves tend to a common, energy-independent form as R → 0 implies
that η(p) must be of the form

η(p) = −s0 ln(p/p∗), (A.15)

where p∗ is a parameter which fixes the phase of the sine-log oscillations (or equivalently
specifies the self-adjoint extension).

The physical meaning of p∗ can be seen by noting that the S-matrix for this system is

e2iδ2(p) = i
sin(η(p) − iπs0/2)

sin(η(p) + iπs0/2)
. (A.16)
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This has a pole at p = ip∗, implying that E = −p2
∗/M corresponds to a bound state. In fact,

as shown by Efimov, there is an infinite tower of bound states with energies E = −p2
n

/
M

where

pn = p∗ enπ/s0 . (A.17)

The bound states accumulate at zero energy and extend downwards in a geometric pattern
with no ground state. The wavefunctions of the bound states are

u(n)
s0

(R) =
√

2 sinh(πs0)

πs0

pnKis0(pnR), (A.18)

where Km(x) denotes a modified Bessel function of the third kind. Near the origin these have
the form

u(n)
s0

(R) ∼
√

2

s0

pn(−1)n+1 sin(s0 ln p∗R − θ). (A.19)

The shallow states are referred to as Efimov states, although the lack of a ground state had
been noted much earlier by Thomas [46].

Appendix B. Rescaled projection operator

The short-distance Green function defined in equation (46) has the spectral representation

G2(p, γ, p∗) =
∫ ∞

−γ 2
d(q2)

1

p2 − q2 + iε

[
D2(q, γ, p∗) + ϑ(q2)

2

π

∫ q

0

dk

q
D3(q, k, γ, p∗)

]

+
π

2

∞∑
n=0

D(n)
B (γ, p∗)

p2
n

p2 + p2
n

. (B.1)

Using the result,

lim
ε→0

∫ ∞

0

f (x)dx

x0 − x ± iε
= P

∫ ∞

0

f (x)dx

x0 − x
∓ iπf (x0), (B.2)

where P denotes the principal value, we find that, for real p,

i

π
[G2(p, γ, p∗) − G2(−p, γ, p∗)] = D2(p, γ, p∗) +

2

π

∫ p

0

dk

p
D3(p, k, γ, p∗). (B.3)

In this equation G2(−p, γ, p∗) is found by analytically continuing p through the upper half of
the complex p plane to −p. Since, by its definition, G2(p, γ, p∗) is real for pure imaginary
p, its value at negative real p is the complex conjugate of that at positive real p and hence
G2(−p, γ, p∗) corresponds to a −iε prescription at the propagator pole.

By rescaling equation (B.3), we obtain an expression for the rescaled projection operator
defined in equation (53):

P̂ (γ̂ ,�) = i

π
(Ĝ2(γ̂ ,�) − Ĝ2(−γ̂ ,−�)), (B.4)

where Ĝ2 is the rescaled Green function defined in equation (49).
That rescaled Green function has the representation

Ĝ2(γ̂ ,�) =
∫ ∞

−γ̂ 2
d(q̂2)

1

1 − q̂2 + iε

[
D̂2

(
γ̂

q̂
, q̂�

)
+ ϑ(q̂2)

2

π

∫ 1

0
dk̂D̂3

(
k̂

q̂
,
γ̂

q̂
, q̂�

)]

+
π

2

∞∑
n=0

D̂(n)
B (γ̂ ,�)p̂n(�)2

1 + p̂n(�)2
. (B.5)
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The analytic properties of this function are needed since it forms part of the integrand
H(q̂) of equation (55), which is used to construct the RG limit-cycle solution. From its spectral
representation, we see that Ĝ2(γ̂ ,�) has poles at the bound state momenta, q̂ = ip̂n(�). The
integral term results in a branch cut down the imaginary axis from q̂ = iγ̂ and then along the
positive real axis.
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